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The Configuration of the Carbon Dioxide Molecule and the Laws 
of the Intramolecular Forces
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Translated from Verhandl. deut, physik. Ges. 16 (1914) 737-53. The paper was received by 
the journal 7th July, 1914. A few lines, beginning in the 8th line on page 741 in the original paper, 
have been left out in the present edition because they contain an incorrect statement, which, 

however, is of no importance for the conclusions of the paper.

1. According to recent investigations most of the infrared spectral bands are 
caused by the movements of electrically charged atoms or groups of atoms, 
whereas the fines observed in the visible and in the ultraviolet spectrum are 
due to oscillations of the electrons. Therefore, the study of the infrared spectra 
must be very useful for our knowledge of the atomic vibrations in the molecules. 
Although the investigation of infrared spectra reveals only data concerning the 
movements of electrically charged atoms it is, however, to be expected that the 
vibrations of neutral atoms are governed by the same laws. In this paper we 
shall mainly be concerned with the atomic vibrations in the carbon dioxide 
molecule. The atoms in this molecule are all electrically charged.

2. In a preceding paper1 it was shown that the three bands at 2.7, 4.3 and 
14.7 [i, which are the only bands in the infrared spectrum of carbon dioxide, 
correspond to three different vibrations of the atoms. As a triatomic molecule 
carbon dioxide has only three internal degrees of freedom. Therefore only three 
vibrations and, accordingly, three infrared bands are to be expected. From the 
wave-lengths of these bands the vibrational frequencies of the molecule can be 
calculated. The interesting question now arises: which properties must we ascribe 
to the carbon dioxide molecule in order to make it vibrate with just these three 
frequencies ? In the following we will consider this problem.

3. Each of the three possible harmonic vibrations of the carbon dioxide mole
cule must be a complex movement of the molecule as a whole; if one atom oscil
lates the two others must necessarily participate in the oscillation. Each of the 
three harmonic vibrations of the molecule will constitute a co-ordinated syn
chronous vibration of all three atoms.
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According to Rutherford the masses of the atoms are concentrated in the 
extremely small nuclei. We may therefore consider the carbon dioxide molecule 

i r- i . ... , 12 16 16as a simple system of three mass points. The masses will be —, —, —, where
N N N

N is Avogadro’s constant. Furthermore we will assume that the two oxygen 
atoms are fully symmetrically bound in accordance with the chemical properties 
of the carbon atom. The carbon dioxide molecule consequently forms an iso
sceles triangle, the shape of which is completely determined by the value of the 
vertex angle, 26.

The equilibrium lengths of the sides of the triangular molecule are denoted 
as Zx (base) and Z2 (the two sides), and the changes in these lengths at a certain 
time as rj, r2, and r3 (cp. fig. 1).

Before we can proceed any further we have to make definite assumptions 
about the nature of the intramolecular forces. We are going to carry through 
the calculations on the basis of two different hypotheses.

First we will assume that all internal forces are central forces between the 
three mass points (Central Force System). Next we will assume central forces 
acting between the carbon and the oxygen atoms, but not between the two oxygen 
atoms. Instead of direct forces between the oxygen atoms we will introduce a 
deformation (bending) force, which will oppose all changes of the angle 0 (Baeyefs 
strain theory). Obviously, the second system agrees with our chemical aspects 
of the valence forces, and we will therefore nominate it the Valence Force System.

4. Central Force System. The force caused by a small (infinitesimal) change, 
r, in the distance between two atoms is represented by kr in the Central Force 
System, where k is a constant characterizing the strength of the bond between 
the two atoms. If we know the values of kx and k2 related to the bonds between 
oxygen and oxygen, resp. carbon and oxygen, and if moreover 6, i.e. the shape
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Fig. 2.

X — 2. 7[l cp — 2.0°

symmetrical p — 10.9

\ = 4.3p (p — 17.5°

unsymmetrical p — 0.39

1. Solution. Central Force System.
0 = 72.5°, kr = 5.34 • 10* dyne/cm, k2 = 1.38 • 10* dyne/cm

X = 14.7[i <p = 83° 

symmetrical p — 0.37

of the molecule., is known we have sufficient data to calculate the three vibra
tional frequencies of the molecule.

On the other hand, it must be possible to compute ku ku and 0 from the 
known frequencies, which means that we are able to calculate the shape and rigidity 
of the carbon dioxide molecule from the measured positions of the infrared bands. 
The details of this calculation will be given in the last part of the paper, but 
I shall state the results here. Two different solutions are obtained:
Either:

0 = 72.5°, k± — 5.34 • 106 dyne/cm, k2 — 1.38 • 10G dyne/cm, 
or

9 — 20.3°, k± — 0.211 • 106 dyne/cm, k2 — 3.51 • 106 dyne/cm.
Fig. 2 and 3 show a survey of the vibrations of the carbon dioxide molecule 

in the two cases. The arrows indicate the relative magnitudes and direc
tions of the linear oscillations of the atoms corresponding to the different infrared 
bands.

9 means the angle between the base (of the triangle) and the direction of 
oscillation, and p the ratio between the amplitude of the oxygen atoms and the 
carbon atom.

In both solutions the 4.3 p. band corresponds to an unsymmetrical vibration, 
whereas the two other bands are ascribed to symmetrical vibrations.
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X = 2.7[1 <p = 69.4° 
symmetrical p = 0.40

À = 4.3p 
unsymmetrical

X = 14.7p 
symmetrical

<p = 69.7° 
p = 1.08

<p = 173.9°
p = 3.5

2. Solution. Central Force System.
O = 20.3°, ki — 0.211 • 10e dyne/cm, k2 — 3.57 • 106 dyne ¡cm.

However, none of these solutions seems to be plausible on closer consideration. 
In the first, the oxygen-oxygen bond is 3.87 times stronger than the oxygen
carbon bond (Äi/Ä2 — 3.87). From a chemical point of view this is extremely 
improbable. In this respect solution 2 is far better having k1¡k2 = 0.059 which 
means a rather weak O—O bond. On the other hand, the second solution is 
very unsatisfactory from a stereochemical point of view because the two oxygen 
atoms are placed very close together.

For valence-theoretical reasons it is to be expected that no satisfactory solution
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X = 14.7p <p = 145° 

symmetrical p = 0.66

X = 2.7{1 ? = 22.5°

unsymmetrical P = 0.40

X = 4.3[i <P =-- 21.9°

symmetrical P = 1.00

3. Solution. Valence Force System.
0 = 67.5°, Åq = 0.292 ■ 10& dyne ¡cm, k2 = 3.58 ■ 10° dyne ¡cm.

for the configuration of the carbon dioxide molecule can be obtained based on 
the assumption that the forces are all central forces. We are now going to investigate 
the configurations found on the basis of a Valence Force System.

5. Valence Force System. In this case, too, we can characterize the internal 
force system, governing the oscillations, by two constants k$ and k2. As before 
k2r2 is the force acting between carbon and oxygen if the distance is changed 
with the amount r2. ke is defined by the equation:

Pq = kQ • l2dQ

Here Pq is the restoring force acting on the oxygen atoms if these are displaced 
l2dft from their positions of equilibrium in a direction perpendicular to the sides 
of the triangle. Again, we can calculate 6, ko and k2 from the (observed) wave
lengths of the infrared bands, and two solutions are obtained.

Details concerning these solutions are indicated in fig. 4 and 5.
Of these two “valence-force” solutions the first appears to be the more plausible 

for several reasons. The two oxygen atoms are not found to be too close together, 
as 0 = 67.5°. Moreover, the constants representing the rigidity of the molecule 
seem to have plausible values. kQ is considerably smaller than k2 which means 
that it is far more easy to ‘bend’ the molecule than to diminish the distance 
between oxygen and carbon, a result that seems most probable. On the other 
hand, certain features point in favour of the last solution. I only want to point 
out that investigations of the far infrared spectrum seem to show that the carbon 
dioxide molecule rotates rather slowly, as there is no absorption between 20 tx 
and 300 fi. If the molecule had the extended shape indicated by solution 1 and
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X = 2.7\i <p = 70.7°

symmetrical p = 0.395

X = 4.3p. <p = 69.6°

unsymmetrical p — 1.074

X = 14.7[x 9 = 4.2°

symmetrical p — 2.15

4. Solution. Valence Force System.
0 = 20.4°, Aq = 0.742 • 10*  dyne I cm, k2 = 3.56 • 10*  dyne I cm

3, one would expect a fast rotation about the long axis because of the small moment 
of inertia about this axis.

It would, of course, not be possible to observe the rotation in the far infrared 
if the molecule did not possess an electrical polarity perpendicular to this axis. 
It is, however, very probables that the molecule corresponding to solution 3 is 
polar in this direction.

If one assumes the carbon-oxygen bond to be of the same strength in carbon 
monoxide as in carbon dioxide one calculates a wave-length 5.2 pi according to 
solution 1 for the absorption band in carbon monoxide, whereas the other three 
solutions all give 3.2 [x. As the band in carbon monoxide is situated at 4.7 [x, 
it follows that our hypothesis leads to a value of the right order of magnitude 
for the absorption wave-lenght, but nothing more. After all we have no reason 



ON THE INFRARED SPECTRA OF GASES 47

for assuming the same bond-strength in carbon monoxide as in carbon dioxide. 
At the calculation the following relation is used:

1
k^Ñ

c = 3 • 1014; N = 65 • 1022.

6. On the deviation of the carbon dioxide molecule from the linear form. Although 
the solutions based upon the “Valence Force” system are more plausible in several 
respects than those based on the “Central Force” system one can, however, 
raise one rather serious objection to these. It might be expected that the angle 
strain force would tend to keep the oxygen atoms in diametrically opposed 
positions. According to organic chemistry the carbon valencies are all equal and 
tetrahedrally distributed. Hence, the molecule must be linear. In our solutions, 
however, we have found it to be non-linear. This result is supported by the 
specific heat of carbon dioxide as the rotational energy is found to be - RT, whereas 
it should be RT for a linear molecule. The valence force system, to which we 
were led through our calculations, does not quite correspond to the valence 
force system expected from the organic chemistry.

In order to explain the deviation from the linear form one might assume that 
there were attractions between the oxygen atoms besides the assumed valence 
forces. The deviation would then be the result of a competition between this attracti
on and a Baeyer valence angle strain. Unfortunately, it is not possible in this case 
to calculate the shape of the molecule and the coefficients of the internal forces 
without making new arbitrary assumptions with respect to the dependence of 
the attractive forces on the distance between the oxygen atoms and with re
spect to the dependence of the valence angle strain on the bending of the molecule. 
Depending upon whether the attractive force or the valence angle strain changes 
with the higher power of the variable, the molecule will approach a valence 
force, respectively central force, molecule.

The bent form of the carbon dioxide molecule might also be explained as a 
centrifugal effect of the rotation. If the rigidity of the molecule initially is very 
low, but becomes very high after a certain bending, a resulting bending could 
be explained. The carbon dioxide molecule was then to be compared with a 
system of two small sticks connected with a universal joint only allowing a certain 
limited bending. In this case it would, on the other hand, be difficult to under
stand why the frequencies of the atomic oscillations are independent of the 
rotation.

7. The influence of the rotation on the infrared bands of the carbon dioxide mole- 
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cule. As previously shown2 it is generally to be expected that an infrared band 
caused by atomic vibrations will appear as a triplet comprising two broad com
ponents and a sharp central line. For diatomic molecules, however, the band 
will be simpler. In this case the sharp central line will be missing*  because the 
rotational axis will be perpendicular to the direction of vibration.

* W. C. Mandersloot (Diss. p. 51, Amsterdam 1914) who as the first has tried to explain the 
disappearance of the sharp line, seems to be of the opinion that according to his explanation the 
central component might disappear for all molecules (cp. p. 58 ff.). The way Mandersloot has 
treated the problem seems hardly permissible. He separates the actual rotation in rotations about 
the axis of vibration and perpendicular to it, and only the last rotation is being considered. One 
must, however, as I previously have done, treat the problem reversely. One must separate the 
oscillation in two components, one parallel to the rotational axis and one perpendicular to it. The 
first component will radiate unperturbed of the rotation, whereas the second component will 
radiate the frequencies ± vr. As to Mandersloot’s note pag. 51 (resp. Thesis IV) the following 
may be said. I have not assumed the axis of oscillation to have an arbitrary direction within the 
molecule, but that the rotational axis may have any possible orientation within the molecule. Only 
for linear, i.e. especially diatomic, molecules this assumption is not correct.

This theory for the influence of the rotation has recently been confirmed by 
the investigations of Burmeister and Eva v. Bahr. In one respect only a certain 
discrepancy between theory and experiment consists. According to the existing 
observations the sharp central fine seems to be missing also in triatomic molecules 
like carbon dioxide and water vapour. These molecules seem to obey the theory 
for diatomic molecules. One must, however, remember that it is only possible 
to observe a sharp line in the absorption spectrum if a narrow slit is used. New 
investigations of the emission spectra of these gases would be very desirable for 
clarifying this point. In the emission spectrum the central line should be observable 
even if it is ever so sharp.

Quite apart from details the investigations of Burmeister and Eva v. Bahr 
have proved that the influence of the rotation on the infrared bands is unmis
takable. It is furthermore possible to draw important conclusions from its ge
neral features.

Generally, it is not to be expected that the influence of the rotation on the 
three carbon dioxide bands should arise from the same rotation. To get a general 
survey of the conditions one has to remember that the radiating molecular vi
brator has a definite axis of vibration, viz. the direction of a corresponding linear 
oscillator radiating in the same way. For the two symmetrical vibrations of carbon 
dioxide this axis of vibration coincides with the symmetry axis of the molecule, 
and for the unsymmetrical vibration it is an axis perpendicular to it in the plane 
of the molecule. As the two symmetrical vibrations possess the same axis they 
must be influenced in the same way by the rotation, whereas one must expect 
a separate behaviour of the unsymmetrical vibration. Therefore, if we had precise 
measurements of the structure of the bands it would be possible to decide which 
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band corresponds to the unsymmetrical vibration and to find out if the molecules 
are rotating faster about the symmetry axis or about a line perpendicular to this 
axis in the plane of the molecule.

At first glance one might be inclined to think that the decision could be made 
from the present measurements. Whereas the distance between the components 
of the double bands at 4.3 ¡z and 14.7 p. approximately give the same rotational 
frequency3 (2.7 • IO11, resp. 2.4 • 1011), the structure of the band at 2.7 [z seems 
to give a considerably greater frequency of rotation4 (about 17 • 1011). This band 
should therefore correspond to the unsymmetrical vibration and the molecule 
should have the highest rotational frequency as well as the lowest moment of 
inertia about an axis perpendicular to the symmetry axis. If we compare these 
demands with the above four solutions we find that none of them are satisfactory. 
Only in the third solution does the band at 2.7 [z correspond to the unsymmetrical 
vibration, but unfortunately the moment of inertia about the symmetry axis here 
is much smaller than that about an axis at right angles to it.

Eva V. Bahr4 is, too, of the opinion that the double band at 2.7 ¡z is not to be 
explained as due to rotation, but that it is of another, yet unknown, origin. The 
band is of quite another type than the usual rotational bands. Each of the two 
bands at 2.7 jz is in all probability a rotational double band. If these were asso
ciated with a low rotational frequency this would be in agreement with solution 3.

8. Absolute size of the amplitudes of the vibrations and the dimension of the mole
cule. The above treatment of the problem is permissible only if the amplitudes 
of the vibrations are really small compared with the dimensions of the molecule.

First, I have verified this for the hydrogen chloride molecule. From the value 
of the most probable rotational frequency the following moment of inertia is 
calculated:5

J = 0.54- IO"39
From this the distance, Z, between the atomic centres is computed by means 

of the equation:
Z2 Cl-H

* N ‘ HCl

For N — 65 • 1022 one gets:
I = 1.89 • 10~8

This value is of the same order of magnitude as the molecular dimensions 
of similar molecules calculated on the basis of the kinetic theory of gases.

In order to calculate the amplitudes of the vibrations we compute first the 
rigidity of the bonds between the atoms. The force, P, acting between the atoms 
when the distance changes with the amount, r, is equal to

P = kr.
4
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The coefficient, k, is determined by the equation:

k = (2 K v)2
CIH

HCÏ
1
Ñ (1)

If a denotes the amplitude of the vibration, we have for the vibrational 
energy (Ew):

(2)
Hence, from equations 1 and 2:

1
a = 5—2 7T V

If we put the vibration energy equal to one quantum we have
Ev = Äv.

Further, if we insert the values
h = 6.4 • 10-27 and N = 65 • 1022

we get
a = 0.158- 10~8.

This means that the amplitude of the vibration is 8.3 per cent of the length 
of the molecule.

If we put RT
e,, = 1T

i.e. we equalize the vibrational energy with the mean value required by the 
classical theory, we find for 18° C

a = 0.041 • IO-8
an amplitude corresponding to only about 2 per cent of the length of the molecule.

It is easy in a similar way to calculate the amplitudes of the vibrations for 
the carbon dioxide molecule if the force constants (&) are known.

I have carried out these calculations for the third solution only; it should, 
however, suffice to demonstrate the smallness of the amplitudes in a simple case.

The results of the calculation are given in the following table.
Vibrational Amplitudes for CO 2. Third Solution. Valence Force System. 6 = 67.5°. 
a) The vibrational energy equals one quantum.
As the dimensions of the carbon dioxide molecule certainly exceeds IO-8, it 

follows from the table that to a good approximation we are entitled to consider 
the vibrations of the carbon dioxide molecule as infinitesimal.

This is, however, not absolutely correct. It is therefore natural that the vibra
tional frequencies are not completely independent of the vibrational energy, i.e.
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Band at Ampl. of C-atom Ampl. of O-atom

14.7p
4.3p
2.7p

2.8 • 1O~10
5.8 • IO“10
3.4 • 1O~10

1.84 • IO“10
2.6 • IO-10
1.36 • IO“10

b) The vibrational energy equals the classical value for 18° C

Band at Ampl. of C atom Ampl. of O atom

14.7p
4.3p
2.7p

1.49 • 10-10
1.66 • IO“10
0.77 • 1O~10

0.98 • IO-10
0.75 ■ IO"10
0.31 • IO“10

that the infrared bands are shifted a little with the temperature. Such a shift 
is in fact observed for the 6 p band of water vapour and for the 4.3 p carbon 
dioxide band6 (cf. ref.7).

9. The considerations presented above are rather incomplete and have not 
resulted in unambiguous conclusions. Nevertheless, I believe them to be of a 
certain interest, because they indicate a way in which we may investigate the 
limitations of our usual mechanical concepts. If the results of new and more 
complete investigations of infrared spectra should turn out to be incompatible 
with considerations like those used above, this might probably indicate that we 
have to resort to similar revolutionary intuitions for explaining the radiation 
connected with the vibrations and rotations of the molecules as has been done 
recently by N. Bohr8 in the case of electronic radiation.

ON THE METHOD USED FOR THE CALCULATIONS

10. Calculation of the infinitesimal vibrations of a carbon dioxide molecule 
assuming central forces (cf. 3 and 4). The vibrations have been calculated by means 
of Lagrange’s equations of motion:

Ô(T— U) d dT 
d t dr'i ’

i = 1, 2, 3. (1)

where T is the kinetic energy and U the potential energy. First, expressions for 
U and T are formed:

4*

Í/ — + 1^2 r2 “H ^2r3 (2)
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and

(3)

(4)wxw2

(5)

(6)

iin O ’ T + a) 

in • y + «) 

■in (¿ * y + «)

r2 — a2 sin

The period of vibration, T, and the amplitudes, a13 a2, a3 must satisfy the 
following three equations:

The solutions of these equations have the following form:

& 2 M cos2 0

nix = 12,
After insertion of the expressions for T and U the Lagrangian equations take 

the following form:
„ ¿2ri d2r2 d2r3
A~dfl+E~d?+E'dF+Nklrl=<>

Ni 9 
dt2 dt2 dt2 2
d2r, d2r2 d2r2

E— + D —- + B —- + Nk,r, = 0
dt2 dt2 dt2

• tg2 0 , B =
2 Af cos2 0 M — 2m2 cos2 0

Aisin20—2w2cos20 mAm2 sin 0
M — 2m2cos2ft 5 2M cos20

m2 =16, M = m1 + 2m 2 = 44

T = T [¿1 ñ2 + Br2 + Br'32 + 2Dr'2r3 + 2Er'ir3 + 25^]

In equation 3 N is Avogadro’s constant and the coefficients A, B, D, E3 have 
the following values:

m2 m1m2

(a — ^T^ai + Ea2 + Eaa = 0 

Ea, + (b-~ • T^a. + Da, = 0 . 

Ea, + Da, + (b — • T^a, = 0

(7)
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If we introduce

and then eliminate a13 a2} and ¿z3, we get:
A — kxx E E
E B — k¿x D
E D B — k2x

= 0

This determinant 9 can be transformed as follows: 

(8)

(9)

\k2x — (B — B)]. [x*k xk2 — x(k¿B + B) + k2A) + (B + D)A — 2B2] = 0 (9a)
If X1? X2, and X3 are the wave-lengths of the carbon dioxide bands the follow

ing values of x must satisfy equation 9a:

2.JL
11 4rr2c2 5 2 4k2c2 ’

2 N
X|-------

3 4rcV (10)

In these expressions c is the velocity of light. We shall denote the numerical 
values of these three expressions as an a2, and a3.

Because a15 a2, and a3 are roots of equation 9a the following three relations 
are valid:

k2<xx = B — D
kx k2 a2 a3 = (B + B) A — 2 B2 

kx k2 (a2 4~ a3) = kx (B 4~ B) 4~ k2 A
(H)

One must remember, however, that it is sufficient if a similar set of relations 
with permuted a-indices are satisfied.

By insertion of the values for A, B, D, E in equations 11 one obtains:

k2 Otj
mx m2

M — 2 m2 cos2 0 ’ Åj k2 0C2 OC3
mr m22

2 M cos2 6

kx k2 (a2 4~ a3) —
mx 4- 2 m2 cos2 6 mrm2

cos2 0 1 M cos2 0

(12)

From equations 12 one finds cos2 0. After elimination of kx and k2
one gets a second order equation in cos2 9. Afterwards oq is changed for a2, resp. 
a3, and these equations are solved. In total one would expect six values for cos2 9. 
Four of these are, however, imaginary in 0 and only two real solutions are obtained.

After the calculation of k13 k2, and 9, the amplitudes are found from the 
equations 7.

B — D
For the root (a J, which was put equal to —- ---- (equation 11) one gets:

^2

ai = 0, <2 2 — ^3« (13)
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And for the two other roots (a2 and a3) one gets:
Oa _ Os _ __________ E _ _A—krtx
ax a ! BD— k2x 2E

Finally, one can calculate the vibrations of each individual atom from the 
changes of the atomic distances (a15 a2J a3) by means of the following relations.

When a± = 0 and a2 = — a3) the carbon atom is vibrating perpendicular to 
the symmetry axis and the oxygen atoms vibrate along the isosceles of the triangle. 
To characterize a vibration it is sufficient to know a quantity, p, defined in the 
following way:

amplitude of the O-atoms
amplitude of the C-atom

One can calculate p from the equation:
1

sin 6 (15)

For the two other vibrations, where a2 = a3, the angle between the base of 
the triangle and the direction of vibration of the oxygen atoms is determined by:

And p is expressed by:
12 1

& 32 sin <p

(16)

(17)

11. Calculation of the infinitesimal vibrations of a carbon dioxide molecule as
suming valence forces (cf. 5). In this case the expression for T, the kinetic energy, 
is identical with equation 3. The potential energy, Í7, is given by:

U = far2 + far23 + fal2dQ2. (18)

By transformation, insertion of v3 for J6, we get:

U = ?kiri + i(^2 + ki sin26)r2 + i(¿2 + ki sin20)r2

+ k3 sin26 r2r3 — k± sinO r3r3 — kr sinO rxr2. (20)
Åg

Here, too, kr = ------— is introduced.
4 cos2 6

If we integrate the Lagrangian equations as done above we get the following 
equation, instead of 9a, for the determination of x:
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\k2x — (B — £>)] • [kjitx2 — (k¿B + Z)) + A(k2 + 2kr sin20)
4- 4Ekx sin0)x 4- A(B 4- D) — 2E2] = 0

Again if Ot OC Ot g are defined by the relations 10 we get for the evaluation 
of k1} k2, and 6 the three equations:

k2<x1 = B — D, = A(B + -D) — 2E2 |
krk2(a2 + a3) — (B + D 4- 2A sin20 4~ 4Esin0)^i 4- Ak2 |

resp. the corresponding equations with permuted a’s.
After insertion of the numerical values for A,B,D,E one gets:

48
If — 8 cos20 ’

Â? 1^ 2^ 2^3 —
384
Ti

1
cos20

k-ik2{<x.2 4~ 0C3) — k2 •
8
11

3 4-8 cos20
COS20 + — (11 — 8 cos20)

(22)

(23)

After elimination of k} and k2 one finally obtains:
a 2<x3

«i

34-8 COS20
11 — 8 cos20

(11 — 8 cos20)2
33 a2 + a3 (24)

from which cos20 is found.
From equations 23 k± and k2, and from 20 k9 are easily found.
The calculation of the proportions between a13a2, and a3 is carried through

B — D
in the following way. For the root (ax)3 which is put equal to —-—, one has 

as before:
¿Zj = 0j £Z2 = d3.

And for the two others (a2 and a3):
a2 a3 A—Åxa E 4- kr sinØ
íZj ax 2(E 4- kra. sinØ) B 4- D — 2a^x sin20 — a.k2

The calculation of the vibrations of each individual atom from a1} a2, 
proceeds in exactly the same way as for central forces.

(25)

(26)

and a 3
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